Q. NO.	[ANS]
1	A
2	D
3	A
4	C
5	B
6	D
7	A
8	B
9	C
10	A
11	D
12	B
13	A
14	A
15	D
16	C
17	BONUS
18	B
19	A
20	C
21	D
22	B
23	B
24	C
25	C
26	B
27	D
28	A
29	B
30	C
31	C
32	D
33	B
34	A
35	B
36	B
37	C
38	B
39	A
40	B
41	B
42	B
43	B
44	C
45	B

Single Correct Answer Type

1 (a)

$v=\sqrt{2 g R} \therefore \frac{v_{1}}{v_{2}}=\sqrt{\frac{g_{1}}{g_{2}} \times \frac{R_{1}}{R_{2}}}=\sqrt{g \times K}=(K g)^{1 / 2}$
2 (d)
Gravitational potential energy is given as

$$
\begin{aligned}
U & =-\frac{G M m}{r} \\
U_{1} & =-\frac{G M m}{r_{1}}, U_{2}=-\frac{G M m}{r_{2}}
\end{aligned}
$$

As $r_{2}>r_{1}$, hence,
$U_{1}-U_{2}=G M m\left[\frac{r_{2}-r_{1}}{r_{1} r_{2}}\right]$ is positie
ie,

$$
\begin{aligned}
& U_{1}>U_{2} \\
& U_{2}<U_{1}
\end{aligned}
$$

$i e$, gravitational potential energy increases.
3
(a)
$g=\frac{4}{3} \pi G \rho R \Rightarrow g \propto \rho R \Rightarrow \frac{g_{e}}{g_{m}}=\frac{\rho_{e}}{\rho_{m}} \times \frac{R_{e}}{R_{m}}$
$\Rightarrow \frac{6}{1}=\frac{5}{3} \times \frac{R_{e}}{R_{m}} \Rightarrow R_{m}=\frac{5}{18} R_{e}$
4
(c)
$H=\frac{u^{2}}{2 g} \Rightarrow H \propto \frac{1}{g} \Rightarrow \frac{H_{B}}{H_{A}}=\frac{g_{A}}{g_{B}}$
Now $g_{B}=\frac{g_{A}}{12}$ as $g \propto \rho R$
$\therefore \frac{H_{B}}{H_{A}}=\frac{g_{A}}{g_{B}}=12$
$\Rightarrow H_{B}=12 \times H_{A}=12 \times 1.5=18 \mathrm{~m}$

$5 \quad$ (b)

Gravitational force provides the required centripetal force $i e$,
$m \omega^{2} R=\frac{G M m}{R^{\frac{5}{2}}}$
$\Rightarrow \quad \frac{m 4 \pi^{2}}{T^{2}}=\frac{G M m}{R^{\frac{7}{2}}}$
$\Rightarrow \quad T^{2} \propto R^{7 / 2}$
$6 \quad$ (d)
$v_{0}=\sqrt{\frac{G M}{r}}=\sqrt{\frac{g R^{2}}{R+h}}$
7
(a)

8 (b)
$\frac{T^{2}}{r^{3}}=$ constant $\Rightarrow T^{2} r^{-3}=\mathrm{constant}$
9
(c)
$\frac{T_{\text {mercury }}}{T_{\text {earth }}}=\left(\frac{r_{\text {mercury }}}{r_{\text {earth }}}\right)^{3 / 2}=\left(\frac{6 \times 10^{10}}{1.5 \times 10^{11}}\right)^{3 / 2}=\frac{1}{4}$
(approx.)
$\therefore T_{\text {mercury }}=\frac{1}{4}$ year
10 (a)
As in case of elliptic orbit of a satellite mechanical energy
$E=-(G M m / 2 a)$ remains constant, at any position of satellite in the orbit,
$\mathrm{KE}+\mathrm{PE}=-\frac{G M m}{2 a}$
Now, if at position r, v is the orbital speed of satellite
$\mathrm{KE}=\frac{1}{2} m v^{2}$ and $\mathrm{PE}=-\frac{G M m}{r}$
So, from Eqs. (i) and (ii), we have
$\frac{1}{2} m v^{2}-\frac{G M m}{r}=-\frac{G M m}{2 a}, i e, v^{2}=G M\left[\frac{2}{r}-\frac{1}{a}\right]$
11
(d)
$\frac{K_{A}}{K_{B}}=\frac{r_{B}}{r_{A}}=\left(\frac{R+h_{B}}{R+h_{A}}\right)=\left(\frac{R+2 R}{R+R}\right)=\frac{3}{2}$
12 (b)
From Kepler's third law of planetary motion

$$
T^{2} \propto R^{3}
$$

Given, $T_{1}=1, T_{2}=8, R_{1}=R$
$\therefore \quad \frac{T_{1}^{2}}{T_{2}^{2}}=\frac{R_{1}^{3}}{R_{2}^{3}}$

$$
R_{2}^{3}=R_{1}^{3} \frac{T_{2}^{2}}{T_{1}^{2}}
$$

$$
R_{2}^{3}=R_{1}^{3} \times(8)^{2}
$$

$$
R_{2}^{3}=R^{3} \times\left(2^{3}\right)^{2}
$$

$\Rightarrow \quad R_{2}=R \times 4=4 R$
13 (a)
$g^{\prime}=\frac{G M}{(R+h)^{2}}$, acceleration due to gravity at height h
$\Rightarrow \quad \frac{g}{9}=\frac{G M}{R^{2}} \cdot \frac{R^{2}}{(R+h)^{2}}$

$$
=g\left(\frac{R}{R+h}\right)^{2}
$$

$\Rightarrow \quad \frac{1}{9}=\left(\frac{R}{R+h}\right)^{2}$
$\Rightarrow \frac{R}{R+h}=\frac{1}{3}$
$\Rightarrow \quad 3 R=R+h$
$\Rightarrow \quad 2 R=h$
14 (a)
Since the gravitational field is conservative field, hence, the work done in taking a particle from one point to another in a gravitational field is path independent
15
(d)

At height $h^{\prime}, \frac{\mathrm{g}}{\mathrm{g}}=1-\frac{2 h}{R}=\frac{90}{100}$
or $\frac{2 h}{R}=1-\frac{90}{100}=\frac{10}{100}=\frac{1}{10}$
or $R=20 \mathrm{~h}=20 \times 320=6400 \mathrm{~km}$
At dept $d, \frac{\mathrm{~g}^{\prime}}{\mathrm{g}}=1-\frac{d}{R}=\frac{95}{100}$
or $\frac{d}{R}=1-\frac{95}{100}=\frac{5}{100}=\frac{1}{20}$
or $d=\frac{R}{20}=\frac{6400}{20}=320 \mathrm{~km}$
(c)
$T=2 \pi \sqrt{\frac{r^{3}}{G M}} \Rightarrow T^{2}=\frac{4 \pi^{2}}{G M}(R+h)^{3}$
$\Rightarrow R+h=\left[\frac{G M T^{2}}{4 \pi^{2}}\right]^{1 / 3} \Rightarrow h=\left[\frac{G M T^{2}}{4 \pi^{2}}\right]^{\frac{1}{3}}-R$
17 (bonus)
From Kepler's third law of planetary motion also known as law of periods

18 (b)
$v_{e}=\sqrt{2} v_{0}$, i.e. if the orbital velocity of moon is increased by factor of $\sqrt{2}$ then it will escape out from the gravitational field of earth
$20 \quad$ (c)
Force on the body $=\frac{G M m}{x^{2}}$
To move it by a small distance $d x$,
Work done $=F d x=\frac{G M m}{x^{2}} d x$
Total work done $=G M m \int_{R}^{R+h} \frac{d x}{x^{2}}=\left[\frac{-G M m}{x}\right]_{R}^{R+h}$
$=G M m\left[\frac{1}{R}-\frac{1}{R+h}\right]$
$=\left[\frac{(R+h)-R}{R(R+h)}\right]=\frac{G M m h}{R(R+h)}$
$\frac{G M}{R^{3}} \times \frac{m h R}{R+h}=\frac{g m h R}{R+h}=\frac{P R h}{R+h}$
21
(d)
$T=2 \pi \sqrt{\frac{l}{g}} \Rightarrow T \propto \frac{1}{\sqrt{g}} \Rightarrow \frac{T_{P}}{T_{e}}=\sqrt{\frac{g_{e}}{g_{P}}}=\sqrt{\frac{2}{1}} \Rightarrow T_{P}=\sqrt{2} T_{e}$
22 (b)
$\frac{d^{2} x}{d t^{2}}=-\alpha x$
We know,

$$
a=\frac{d^{2} y}{d t^{2}}=-\omega^{2} x
$$

From Eqs.(i) and (ii), we have

	$\omega^{2}=\alpha$
	$=$$\alpha$ or \therefore
	$\frac{2 \pi}{T}=\sqrt{\alpha}$
	$T=\frac{2 \pi}{\sqrt{\alpha}}$

23 (b)
Motion given here is SHM starting from rest
$24 \quad$ (c)
The average acceleration of a particle performing SHM over one complete oscillation is zero.
26 (b)
$x=A \cos (\omega t+\theta)$;
Velocity, $v=\frac{d x}{d t}=-A \omega \sin (\omega t+\theta)$
$=-A \omega \sqrt{1-\cos ^{2}(\omega t+\theta)}$
$=-A \omega \sqrt{1-x^{2} / A^{2}}=-\omega \sqrt{A^{2}-x^{2}}$
Here, $v=\pi \mathrm{cms}^{-1}, x=1 \mathrm{~cm}, \omega=\pi \mathrm{s}^{-1}$
So $\pi=-\pi \sqrt{A^{2}-1^{2}}$
or $(-1)^{2}=A^{2}-1$ or $A^{2}=2$
or $A=\sqrt{2} \mathrm{~cm}$
27 (d)
For simple harmonic motion, $y=a \sin \omega t$

$$
\begin{align*}
\therefore \quad y=a \sin & \left(\frac{2 \pi}{T}\right) t \\
y_{1} & =a \sin \left[\left(\frac{2 \pi}{16}\right) \times 2\right] \\
& =a \sin \left(\frac{\pi}{4}\right)=\frac{a}{\sqrt{2}} \tag{i}
\end{align*}
$$

At $t=4 \mathrm{~s}$ or after 2 s from mean position.

$$
y_{1}=\frac{a}{\sqrt{2}}, \text { velocity }=4 \mathrm{~ms}^{-1}
$$

\therefore Velocity $=\omega \sqrt{a^{2}-y_{1}^{2}}$
or $\quad 4=\left(\frac{2 \pi}{16}\right) \sqrt{a^{2}-\frac{a^{2}}{2}}$
[From Eq. (i)]
or $\quad 4=\frac{\pi}{8} \times \frac{a}{\sqrt{2}}$
or $\quad a=\frac{32 \sqrt{2}}{\pi} \mathrm{~m}$
28 (a)
The given equation is written as,

$$
\begin{equation*}
y=3 \sin \left(100 t+\frac{\pi}{6}\right) \tag{i}
\end{equation*}
$$

The general equation of simple harmonic motion is written as

$$
\begin{equation*}
y=a \sin (\omega t+\emptyset) \tag{ii}
\end{equation*}
$$

Equating Eqs. (i) and (ii), we get

$$
a=3, \omega=100
$$

Maximum velocity, $v=a \omega$

$$
=3 \times 100=300 \mathrm{~ms}^{-1}
$$

29 (b)
Length of the line = Distance between extreme positions of oscillation $=4 \mathrm{~cm}$
So, Amplitude $a=2 \mathrm{~cm}$
also $v_{\text {max }}=12 \mathrm{~cm} / \mathrm{s}$
$\because v_{\max }=\omega a=\frac{2 \pi}{T} a$
$\Rightarrow T=\frac{2 \pi a}{v_{\max }}=\frac{2 \times 3.14 \times 2}{12}=1.047 \mathrm{~s}$
30
(c)

When $t=\frac{T}{12}$, then $x=A \sin \frac{2 \pi}{T} \times \frac{T}{12}=\frac{A}{2}$

$$
\begin{aligned}
\mathrm{KE} & =\frac{1}{2} m v^{2}=\frac{1}{2} m \omega^{2}\left(r^{2}-x^{2}\right) \\
& =\frac{1}{2} m \omega^{2}\left(A^{2}-\frac{A^{2}}{4}\right) \\
& =\frac{3}{4}\left(\frac{1}{2} m \omega^{2} A^{2}\right) \\
\mathrm{PE} & =\frac{1}{2} m \omega^{2} x^{2}=\frac{1}{4}\left(\frac{1}{2} m \omega^{2} A^{2}\right) \\
\frac{\mathrm{KE}}{\mathrm{PE}} & =\frac{3}{1}
\end{aligned}
$$

31
(c)

The bob possess kinetic energy at its mean position which gets converted to potential energy at height h. But the total energy remains converted.

Hence, we have

$\mathrm{KE}=\mathrm{PE}$

Let velocity of the bob at mean position be v and m be its mass, then we have

$$
\begin{array}{ll}
& \frac{1}{2} m v^{2}=m g h \\
\Rightarrow & v=\sqrt{2 g h} \\
& \text { Putting } g=9.8 \mathrm{~ms}^{-2}, h=0.1 \mathrm{~m} \\
\therefore & v=\sqrt{2 \times 9.8 \times 0.1}=1.4 \mathrm{~ms}^{-1}
\end{array}
$$

32 (d)
$y=a \sin \omega t ; v=\frac{d y}{d t}=a \omega \cos \omega t$
$=a \omega \sin (\omega t+\pi / 2)$
Acceleration $A=\frac{d v}{d t}=-\omega^{2} a \sin \omega t$
$=\omega^{2} a \sin (\omega t+\pi)$
33
(b)

Maximum acceleration $=$ Maximum velocity $\times \pi$
ie, $\quad \omega^{2} A=\pi \omega A$
where A is amplitude and ω is angular velocity.
\Rightarrow
$\omega=\pi$
$\Rightarrow \quad \frac{2 \pi}{T}=\pi$
$\Rightarrow \quad T=2 \mathrm{~s}$
34
(a)

At the time $t=\frac{T}{4}=\frac{4}{4}=1 \mathrm{sec}$ after passing from mean position, the body reaches at it's extreme position. At extreme, position velocity of body becomes zero
35 (b)
$y=4 \cos ^{2}\left(\frac{t}{2}\right) \sin 1000 t$
$\Rightarrow y=2(1+\cos t) \sin 1000 t$
$\Rightarrow y=2 \sin 1000 t+2 \cos t \sin 1000 t$
$\Rightarrow y=2 \sin 1000 t+\sin 999 t+\sin 1001 t$
It is a sum of three S.H.M.
36 (b)
PE varies from zero to maximum. It is always positive sinusoidal function
37 (c)
$y=A \sin P T+B \cos P T$
Let $A=r \cos \theta, B=r \sin \theta$
$\Rightarrow y=r \sin (P T+\theta)$ which is the equation of SHM
38
(b)
$n=\frac{1}{2 \pi} \sqrt{\frac{g}{l}} \Rightarrow n \propto \frac{1}{\sqrt{l}} \Rightarrow \frac{n_{1}}{n_{2}}=\sqrt{\frac{l_{2}}{l_{1}}}=\sqrt{\frac{L_{2}}{2 L_{2}}}$
$\Rightarrow \frac{n_{1}}{n_{2}}=\frac{1}{\sqrt{2}} \Rightarrow n_{2}=\sqrt{2} n_{1} \Rightarrow n_{2}>n_{1}$
Energy $E=\frac{1}{2} m \omega^{2} a^{2}=2 \pi^{2} m n^{2} a^{2}$
$\Rightarrow \frac{a_{1}^{2}}{a_{2}^{2}}=\frac{m_{2} n_{2}^{2}}{m_{1} n_{1}^{2}} \quad[\because E$ is same $]$
Given $n_{2}>n_{1}$ and $m_{1}=m_{2} \Rightarrow a_{1}>a_{2}$
$39 \quad$ (a)
On the inclined plane, the effective acceleration due to gravity
$\mathrm{g}^{\prime}=\mathrm{g} \cos 30^{\circ}$
$=g \times \sqrt{3} / 2$
$\therefore \quad \mathrm{T}=2 \pi \sqrt{\frac{1}{\mathrm{~g}^{\prime}}}=2 \pi \sqrt{\frac{2 \mathrm{l}}{\sqrt{3} g}}$
$40 \quad$ (b)

So $B=A, \phi=240^{\circ}=\frac{4 \pi}{3}$

Assertion - Reasoning Type

42 (b)
Acceleration due to gravity,
$g^{\prime}=g-R \omega^{2} \cos ^{2} \lambda$
At equator, $\lambda=0^{\circ}$ i.e. $\cos 0^{\circ}=1 \therefore g_{e}=g-R \omega^{2}$
At poles, $\lambda=90^{\circ}$ i.e. $\cos 90^{\circ}=0 \therefore g_{p}=g$
Thus, $g_{p}=g_{e}=g-g+R \omega^{2}=R \omega^{2}$
Also, the value of g is maximum at poles and minimum at equators

43 (b)

If root mean square velocity of the gas molecules is less than escape velocity from that planet (or satellite) then atmosphere will remain attached with that planet and if $v_{r m s}>u_{\text {escape }}$ then there will be no atmosphere on the planet. This is the reason for no atmosphere at moon

$44 \quad$ (c)

Amplitude of oscillation for a forced, damped oscillator is $A=\frac{F_{0} / m}{\sqrt{\left(\omega^{2}-\omega_{0}^{2}\right)+(b \omega / m)^{2}}}$, where b is constant related to the strength of the resistive force, $\omega_{0}=\sqrt{k / m}$ is natural frequency of undamped oscillator ($b=0$)

When the frequency of driving force $(\omega) \approx \omega_{0}$, then amplitude A is very larger.

For $\omega<\omega_{0}$ or $\omega>\omega_{0}$, the amplitude decreases
45
(b)

In simple pendulum, when bob is in deflection position, the tension in the spring is $T=m g \cos \theta+\frac{m v^{2}}{l}$. Since the value of θ is different at different positions, hence tension in the string is not constant throughout the oscillation

At end points θ is maximum; the value of $\cos \theta$ is least, hence the value of tension in the string is least. At the mean position, the value of $\theta=0^{\circ}$ and $\cos 0^{\circ}=1$, so the value of tension is largest

Also velocity is given by $v=\omega \sqrt{a^{2}-y^{2}}$ which is maximum when $y=0$, at mean position

